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General solutions of the distribution of cyclic species are sought in irreversible 
A-R-By_ 1 and R-Af branching processes. With the aid of the concept of an m 
tree, we find the simple explicit solutions as a function of the extent of reaction 
D. In the irreversible processes of a sufficiently concentrated solution, 

R ~ ~(kRJkL)[( f -  1 ) DB]J/j for A-R-By_ 1 model 
jJD ~- ~(kRHkL)[(f _ 1) D]s/2j for R-Af model 

respectively. Here [R j] is the concentration of cyclic j-mer, kRj the rate constant 
of ring j-met formation, and kc that of interconnection; the subscript B denotes 
the B functional unit in the A-R-By_ 1 model For random flight chains one 
may replace kRJkL with the Kuhn cyclization probability (3/2n(r~)) 3/2 ( ( r f )  
is the mean square distance), which yields the known exponential law as in the 
case of the linear theory: [Rj] oc j-5/2. Hence this theory corresponds to the 
generalization of the Jacobson-Stockmayer linear theory ( f =  2). 

KEY WORDS: Random polycondensation; branching process; m tree; 
distribution of cyclic species. 

1. I N T R O D U C T I O N  

This paper  deals with the dis t r ibut ion of cyclic species in b ranch ing  
processes. The microscopic theories ~1-3) of the b ranch ing  process, including 

the mean  link probabi l i ty  approach,  ~4-6) have suffered from a major  

problem in their inabi l i ty  to picture the correct critical behavior,  which has 
frequently been criticized as a fundamenta l  flaw of the classical theories. It  
has been pointed out  by de Gennes  ~7) and  Stauffer ~8) that  the deviat ion 

i Kohno Medical Institure, Tomitahama 26-I4, Yokkaichi City, Mie 512, Japan. 

797 

0022-4715/92/0200-0797506.50/0 �9 1992 Plenum Publishing Corporation 



798 Suematsu and Okarnoto  

from the correct critical behavior could be attributed to disregarding the 
ring production and the distortion of reactivity of unreacted functional 
units (ufu). Despite a number of ingenious ideas, so far the problem has 
not been sufficiently improved. (5'9'~2) 

Here we shall reexamine the distribution of cyclic species in network 
formation to deduce the explicit solutions on the assumption of equal 
reactivity.(l~ 

2. T H E O R Y  

We shall confine ourselves to irreversible processes of a concentrated 
solution such as a nonsolvent system, where the interconnection rate 
exceeds the cyclization rate. 

2.1. A - R - B f _  1 Model  

Let an unreacted A functional unit (fu) on a mean x-sized cluster be 
the root, so that the average number of unreacted B's in the j t h  generation 
on the same cluster becomes 

N(Bj)--- [ - ( f -  1)DB] j-~ ( f - -  1)(1 --D~) (1) 

where f denotes the functionality and DB the extent of reaction of B fu; we 
have 

B 

B 
r o o t  

B A - - ~  B ( f =  3) 

B . . .B  
1 2 3 . . . j  

(generation) 

Let M o and D A be the total number of units and the extent of reaction of 
A fu, respectively. Then, there are Mo(1--DA) such clusters. Let i be the 
number of successful collisions to jump into chemical bond formation, 
which are called transitions in a statistical sense, m) For a sufficiently 
concentrated solution, one may approximate the transition probability 
Pi of cyclization in ( i -  1 ) --* i as 

Pi = cyclization rate 

x (interconnection rate + cyclization rate)-  

--- cyclization rate/interconnection rate 
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which is equivalent to the variation of the number of ring j-mers. Hence, 
one may write the variation in the form Cl1~ 

(SNRj "~ kRj" Mo(1 -- DA)( f -  1 )(1 -- D s ) [ ( / - -  1 ) DB] j - I  

x {k L - [ ( f -  1) Mo - i](M0 - i)/V} -1 (2) 

where NRj is the number of the ring j-mers to be formed, kRj the rate 
constant of ring j-mer formation, kL that of interconnection, and i the 
number of reacted units. For  large i and Mo, one may approximate Eq. (2) 
with a differential equation: 

dNRj ~- {kRj" Mo(1 -- DA)( f - -  1)(1 -- D B ) [ ( f - -  1) DB] j-~ 

•  (3) 

With dD a =di/Mo and D A = ( f - 1 ) D  B, integrate Eq. (3) with respect to 
DA or DB, the result being 

[Rj] = NRJV "~ ~ (kRHkr) DQj 
( (kRJkL)[ ( f  -- 1) Dn]Y/j 

(4) 

2.2.  R-A  t M o d e l  

Choose the root from one of the units with m unreacted A's on a mean 
x cluster. We call such a tree an m tree: 

( m =  1) 

A ~  
AA--  

A - - - ~  .. .  A 
AA--  

A - - . A  
1 2 . . - j  

(generation) 

m = 1 Tree 

Let D be the extent of reaction of A functional units. Then one finds 
m ufu in the first and ( f - m ) [ ( f - 1 ) D ]  j 2 ( f - 1 ) ( 1 - D )  ufu in the 
j(~>2)th generation. The fraction of the m tree is equal to the probability 
of finding m ufu from f fu in a single monomer unit, so that there are 

such m trees in the same system. 

822,'66,,'3-4-8 
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A. Ring M o n o m e r ,  In a single m tree there are m(m - 1)/2 chances 
of cyclic monomer formation, so that the variation of the ring monomer 
number may be written as in the transition of i -  1 ~ i, 

dNR1 ~- ~ R1 2 m(m--1)Mo ( 1 - D ) m D  s-m 
m = 2  

1 - 1  

where D = 2i/fMo, is the number of transitions, and hence 2i the number 
of reacted A's. Replacing di with (fMo/2) dD, and with the help of the 
theorem 

f ( f - - 2 ) ( 1 - - D ) m  2Dr-m= 1 
m - 2  m = 2  

we can integrate the above equation with respect to D in the interval 
[0, D], yielding 

[R1]D ~-- (kR~/kt)(f-- 1) D/2 (6) 

B. Ring j - m e r .  There are 

1 f 1 
(Jj=-~ ~ m ( f - m ) [ ( f -  1)D] j -~ ( f -  1)(1 - D )  Mo(xm)Av 

m = l  

chances of ring j-mer formation in ( i - 1 ) - - ,  i. Thus the variation of NRj 
may be written in the form 

dNRj ~- { kRi~b/[ (1/2 ) k L(fMo - 2i)2/V] } di (7) 

which leads to 

[Rj] D -~ (kRJkL)[( f -  1)D]S/2j (8) 

This happens to include the ring monomer case. Hence, combining Eq. (6) 
with Eq. (8), we arrive at the general solution of the R-Ay model (Fig. 1). 

In summary, in a sufficiently concentrated system we obtain, for all j 's, 

[Ri]D,,~S(kRJkL)[(f--1)DB]J/j. forA-R-Br tmodel  (4) 
[(KRJkL)[( f -  1)D]J/2j for R-Azmodel (8) 

respectively. One may put k~/kL=(3/2n(r~)) 3/2 for random flight 
chains, (13"14) where ( r~)  is the mean square distance from the first 
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Fig. 1. The distribution of cyclic species: The concentration of cyclics of j = 1-10 in a sol 
fraction is plotted according to the general solution (8) (R-Af model); kR/kz= (3/27rj) 3/2. 
Sufficiently concentrated systems, say, nonsolvent systems, are assumed, so that  the gel points 
coincide with ~ 1/ ( f -1) .  The results are for (-.-) f =  2, ( - - ) f =  3, ( * * ) f =  4. 

generation to the jth. This result agrees with Spouge's expression (u) in 
equilibrium: If we compare our notations with the Spouge's, 

kR j / k  L --+ pj  

( f -  1) D ~ m2 

If f = 2 ,  then the derived solutions rigorously reduce to the linear 
theory. (13'14) Hence one readily sees that the Jacobson-Stockmayer theory 
is a special case of this theory. 

APPENDIX  

In the whole system there are 

~Mo( f -  1)(1--DA)(1--DB)[(f-- 1)DB] j 1 
(~S=~lMof(f - 1)(1 - D )  2 [ ( f -  1)D] s 1 

for A-R-Bf 1 model 

for R-Af model 

(A1) 

chances of cyclic j-mer formation in the respective sol phases, which are 
equivalent to the combinatorial numbers of j-sized "chains." 

2 In ref. 12 the distribution of cyclic species is described in terms of partit ion functions. 



802 Suematsu and Okamoto 

A C K N O W L E D G M E N T S  

We very much thank Dr. Kohno and Prof. Kawazoe (Nagoya City 
University) for their helpful advice. 

References 

1. P. J. Flory, J. Am. Chem. Soc. 63:3083 (1941). 
2. W. H. Stockmayer, J. Chem. Phys. 11:45 (1943). 
3. H. Galina and A. Szustalewicz, Macromolecules 22:3124 (1989). 
4. M. Gordon, Proc. R. Soc. A 268:240 (1962). 
5. W. Burchard, Adv. Polymer Sci. 48:1 (1983). 
6. S. I. Kuchanov, S.V. Korolev, and S. V. Panyukov, Adv. Chem. Phys. 43:115 (1988). 
7. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 

New York, 1979), Chapter V. 
8. D. Stauffer, A. Coniglio, and M. Adam, Adv. Polymer Sci. 44:103 (1982). 
9. K. Dusek and M. Ilavsky, J. Polymer Sci. Syrup. 53:57 (1975). 

10. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 
1971), Chapter III. 

11. K. Suematsu and T. Okamoto, Theory of ring formation in irreversible process, Colloid 
Polymer Sci: and J. Phys. Soc. Jpn, to appear. 

12. J. L. Spouge, J. Star. Phys. 43:143 (1986). 
13. W. Kuhn, Kolloid Z. 68:2 (1934). 
14. H. Jacobson and W. H. Stockmayer, J. Chem. Phys. 18:1600 (1950). 


